ارزیابی کارآیی دو نرمافزار شبکه عصبی مصنوعی در پیشبینی تبخیر- تعرق گیاه مرجع
Authors
Abstract:
در این تحقیق، کارائی دو نرمافزارشبکه عصبی مصنوعی (ANN) در برآورد تبخیر-تعرق گیاه مرجع (ET0) بررسی گردید. بدین منظور از دادههای 2 سال لایسیمتری به عنوان ارقام شاهد برای ارزیابی استفاده شده و دو نرمافزار مرسوم NS وNW با قابلیت بهکارگیری آلگوریتمهای متفاوت، بهکار رفت. جهت ارزیابی اجرای دو نرمافزار برای آرایشها، قواعد یادگیری و توابع محرک مختلف، از شاخصهای آماری جذر میانگین مربعات خطا (RMSE)، میانگین خطای مطلق (MAE) و ضریب تعیین (R2) استفاده شد. با اجرای نرمافزار NS آرایش مطلوب با ویژگی حداقل RMSE، MAE و حداکثر R2 در مقایسه با ارقام مشاهداتی (لایسیمتری) به ترتیب معادل 08/0 (میلی متر در روز)، 07/0 (میلی متر در روز) و 87/0 بدست آمد. نتایج تحقیق نشان داد نرمافزار NS با آرایش مطلوب که ویژگی مدل آموزشی گرادیان مزدوج و تابع محرک سیگمویید را دارا باشد، نسبت به نرمافزار NW با توجه به تعداد تکرار کمتر و زمان محاسباتی کوتاهتر برتری دارد. نتایج نشان داد وجود دو لایه پنهان نسبت به یک لایه پنهان بر دقت تبخیر-تعرق برآورد شده از نرمافزار، تاثیری نداشت. بررسی حساسیت مدل شبکه عصبی مصنوعی نشان داد که تبخیر- تعرق بیشترین وابستگی را به حداکثر دمای هوا و کمترین وابستگی را به حداقل رطوبت نسبی دارد.
similar resources
ارزیابی کارآیی دو نرم افزار شبکه عصبی مصنوعی در پیش بینی تبخیر- تعرق گیاه مرجع
در این تحقیق، کارائی دو نرمافزارشبکه عصبی مصنوعی (ann) در برآورد تبخیر-تعرق گیاه مرجع (et0) بررسی گردید. بدین منظور از دادههای 2 سال لایسیمتری به عنوان ارقام شاهد برای ارزیابی استفاده شده و دو نرمافزار مرسوم ns وnw با قابلیت بهکارگیری آلگوریتمهای متفاوت، بهکار رفت. جهت ارزیابی اجرای دو نرمافزار برای آرایشها، قواعد یادگیری و توابع محرک مختلف، از شاخصهای آماری جذر میانگین مربعات خطا (rm...
full textارزیابی شبکه عصبی مصنوعی و مدلهای فیزیکی تجربی تخمین تبخیر- تعرق گیاه مرجع در آبوهوای نیمهخشک
full text
مقایسه روشهای سری زمانی و شبکه عصبی مصنوعی در پیشبینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)
تبخیر-تعرق یکیازمؤلفههایمهمدرمصرفمنابعآب در بخش کشاورزیمیباشد. لذا ارائه روشی که پیشبینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، میتواند در اخذتصمیم بهینهبرایبرنامهریزی منابع آب کمککند. دراینتحقیق،روشهای سری زمانی و شبکههای عصبی مصنوعی درپیشبینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدلهای A...
full textتخمین تبخیر و تعرق مرجع روزانه به کمک مدل درخت تصمیمM5 و شبکه عصبی مصنوعی
تعیین دقیق آب مصرفی گیاه باعث افزایش راندمان آبیاری و بهبود مدیریت آب در مزرعه را دنبال دارد. تبخیر و تعرق یک از اجزای اصلی چرخهی هیدرولوژی محسوب میشود و برآورد دقیق آن در مدیریت منابع آب نقش اساسی دارد. در این تحقیق به ارزیابی مدل درختی M5 و مدل شبکهی عصبی تحت شرایط مختلف حداقل دادهی اقلیمی در یک منطقهی خشک سرد پرداخته شد. دادههای مورد استفاده در این تحقیق شامل دمای حداقل و حداکثر، رطو...
full textتخمین تبخیر- تعرق گیاه مرجع درون گلخانه با استفاده از شبکههای عصبی مصنوعی
امروزه شبکههای عصبی مصنوعی کاربرد بسیاری در مسائل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کردهاند. در این پژوهش جهت تخمین تبخیر- تعرق مرجع داخل گلخانه با استفاده از شبکههای عصبی مصنوعی، از دادههای هواشناسی اندازهگیری شده داخل گلخانه و همچنین دادههای اندازهگیری شده خارج گلخانه استفاده گردید. در این پژوهش از شبکههای عصبی مصنوعی با ساختار ...
full textMy Resources
Journal title
volume 19 issue بهار و تابستان
pages 201- 212
publication date 2009-06-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023